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Ibaraki University (Professor)

've been researching NLP ever since
graduated from the university.
Recently, | study about transfer learning
of pretraining model like BERT, and
object detection in CV domain.




Last week, my book was published.
Please buy it if you can read Japanese.
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Agenda

1. Introduction of BERT

7. Input/Output of BERT

3. Use of BERT through transformers
4. Downsizing of BERT model
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BERT

@ Cornell University

== https://arxiv.org/abs/1810.04805

Computer Science > C

p ion and L

BERT: Pre-training of Deep Bidirectional Transformers for Language O Ct. 2 O 1 8 .

Understanding

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
(Submitted on 11 Oct 2018)

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder

Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train S u r a S S e d E I_ I\/l O b f a r
deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre- p y

trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models \

for a wide range of tasks, such as question answering and language inference, without substantial task-specific
architecture modifications

BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural

language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI
accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1to 93.2 (1.5% a y . .

absolute improvement), outperforming human performance by 2 0%

Biggest impact on NLP world since word2vec !

Main technique is multi-head attention used
in the Transformer.

Vaswani, Ashish, et al. "Attention is all you need."
Advances in neural information processing systems. 2017.



Image of Input/OQutput of BERT

Sequence of contextual word embeddings
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Contextual word embeddings

| love a dog. He's a police dog.
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In word2vec, two embeddings are same.



Multi-head Attention
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[SEP]
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Self-Attention
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Multi-head Attention is not
self-attention.

But they are similar, and
same input/output form.
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Query. Key, Value

(X — Input = seq. of word embeddings
X_[X1’X2""1Xn] i _ ) . .
n X d Xk : k-th word embedding

d-dim. vector

N
Wq,Wk,WVJ: d x d, parameters,

independent for size of X

XWq n X d

XW, n xd
softmax(XW, «(XW,)") n x n
XW, nxd

 softmax(XW, «(XW,)" )XW, nxd |




feature-based and fine-tuning

‘t Learning of only this part is

[ ] / feature-based use.
NN

Sequence Of\ Learning of these two parts is

word embeddings

' ]/ fine-tuning use.

[ BERT

1

Input sentence




Difficulty of Fine-tuning

Output
f made in TensorFlow
W) $
“‘ We must make this part
Sequence of in TensorFlow.

word embeddings

L i 3
[ BERT ] Programing of Fine-Tuning

t was difficult.

Input sentence




Appearance of Hugging Face

Output
f made in PyTorch
(o] ]
‘.‘ We can make this part
Sequence of in PyTorch.

word embeddings

L § 2

[ BERT ] Programing of Fine-Tuning

t gets easy.

Input sentence
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https://github.com/huggingface/transformers

README.md

LI ]
» lranstormers

State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch

@ Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert ) provides state-of-the-art
general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) for Natural Language Understanding
(NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability

between TensorFlow 2.0 and PyTorch.

" ) R ‘1 b ® © weeky
‘ ' :‘, all time
new it new L

We can download all codes of transformers
from this site.



Documentation is in

https://huggingface.co/transformers/

m # MODELS B0 FORUM

Docs » Transformers View page source

Y&
Transformers

A transformers

Search docs State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

GET STARTED @ Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides

. general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language
Quick tour Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in
Installation 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.

Philosophy
This is the documentation of our repository transformers.

Glossary

USING € TRANSFORMERS Features

Current version is 3.1.0



Four important classes on BERT

5e
5e

Config
‘Tokenizer
BertModel
BertForMaskedLM

It we only know these four classes,
we don't need the rest.

)
;
;
;

4 There are some classes for specific tasks. A
However, it is more applicable to make it
by yourself.
It is easy because we can use PyTorch.

N g g Y,




Pretrained models

https://huggingface.co/transformers/pretrained_models.html

» Pretrained models

Pretrained models

Here is the full list of the currently provided pretrained models together with a short presentation of each model.

For a list that includes community-uploaded models, refer to https://huggingface.co/models.

Architecture Shortcut name Details of the model

12-layer, 768-hidden, 12-heads, 110M

arameters.
eeeeeeeeeeeeeeeee .
Trained on lower-cased English text.

If the model is registered in above site,
we can use that model by its name



Required Tiles to use BERT

(1) Model file
pytorch_model.bin

(2) Configuration file
config.json

(3) Vocabulary file
vocab.txt

'\

Standard file names



Tokenizer

Input of BERT is sequences of word IDs

Sentence mmmm) Sequence of word IDs

|

Tokenizer does this transform

-

If you use Japanese BERT, itis better
to choose the tokenizer used in learning

BERT.
\_

~




Not use of Tokenizer

Get word IDs from ‘vocab.txt’

Attend to special tokens

CLS]  put the beginning of the sentence
SEP|  put the end of the sentence
PAD]  padding

UNK]  unknown word

MASK] mask




#1/usr/bin/python dic.py
# -*- coding: sjis -*-

text = ['[CLS]", '#", '1&", 'K, AV, g =", ', ', '[SEP]']
In =0
dic = {}
with open('tohoku/vocab.txt','r',encoding="utf-8") as f:
word = f.readline()
while word:
word = word.rstrip()
dic[word] = In
In +=1
word = f.readline()

ids = [ dic[w] for w in text ]
print(ids)

$ python dic.py
12,1325, 9, 2928, 14, 3596, 8, 3]




Try BERT

from transformers import BertModel, BertConfig
import torch

config = BertConfig.from_json_file('config.json')
model = BertModel.from_pretrained('pytorch_model.bin’,
config=config)

ids = [2, 1325, 9, 2928, 14, 3596, 8, 3] # FhlF KA UTF X,

ids = torch.tensor(ids).unsqueeze(0)
a = model(ids)




QUJ[DUJ[ of BERT [ a = model(ids) }

Output a is tuple. Size is various.

al0] main output content
torchSize( [batch size, # of words, dim. of word | )

al0][0] output of BERT for 0-th sentence

>>> g|0][0].shape
torch.Size([8, 768]) # 8 words, 768 dim.

Embedding of [CLS] in 0-th sentence

>>> a[0][0][0].shape
torch.Size([768])



Use of BertJapaneselokenizer

from transformers import BertlapaneseTokenizer

tknz = BertJapaneseTokenizer.from pretrained(
'cl-tohoku/bert-base-japanese')

ids = tknz.encode(‘FAlE RAFE, )
print(ids)

# [2,1325,9,2928, 14, 3596, 8, 3]

We don’t need segment an input sentence
Into words.



Not use of model name

If the model is registered in Hugging Face site,
the tokenizer can be set by its model name.

If the model is not in Hugging Face site,
tokenizer of the model can be used as follows:

from transformers import BertlapaneseTokenizer
from transformers import tokenization_bert_japanese

tknz = BertJapaneseTokenizer('tohoku/vocab.txt',
do lower case=False,do basic tokenize=False)

tknz.word_tokenizer = tokenization_bert japanese.MecabTokenizer()



| ength of sentence

Limitation of length of sentence (number of words)
is set in the ‘config.json’.

"max_position_embeddings": 512
1

This number can be changed

1T the input is over this limitation,
errors come in putting it into the model.



Note on sentence length

When input is a single sentence,

[CLS] and [SEP] are added, that +2.
When input is a double sentences,

[CLS], [SEP] and [SEP] are added, that +3.

Sentence length is limited, but the tokenizer
is not suffered from this limitation.

You must remove the overed part
> in output of the tokenizer in yourself.
Auto remove may not be set in a system.




Max_ Posit

ion embeddings

This variable means the limitation
on sentence length.

This num

ber can be changed.

No problem if we set a big number to this ?

No

good!

jl> - Speed gets slow.
- Need much memory.

- No sense if the number is bigger

t

nan the number used in learning.



How do we get middle layer output ?

config.output_hidden_states=True

from transformers import BertModel, BertConfig
import torch

config = BertConfig.from_json_file('config.json')
model = BertModel.from_pretrained('pytorch_model.bin’,
config=config)

ids = [2, 1325, 9, 2928, 14, 3596, 8, 3] # FAIIRI T Z,

ids = torch.tensor(ids).unsqueeze(0)
a = model(ids)




a = model(ids)

t
If output_hidden_states=True,

size of tuple a is 3.

al2] is a tuple, the size is 13.
Fach element of al2] means each layer output.

-1] seq. of embeddings of 12th layer
-2] seq. of embeddings of 11th layer

d
d

al2]l-12] seq. of embeddings of first layer
al2]l-13] seq. of input embeddings of BERT




BertForMaskedl M

BERT can be used as Masked Language Model.
BertForMaskedLM can predict the [MASK] word.

/" F o x [MASK] A 7= I

I (1 love [MASK]. )

BERT can predict the masked word.
BERT outputs the probability p(w) that
kthe masked word is the word w. /




>>> import torch

>>> from transformers import BertConfig, BertForMaskedLM

>>> from transformers import BertTokenizer

>>> config = BertConfig.from_json_file(‘config.json")

>>> model = BertForMaskedLM.from_pretrained('pytorch_model.bin’,

config=config)

>>> tknz = BertTokenizer('vocab.txt’, do_lower _case=False,

do_basic_tokenize=False)

>>> ids = tknz.encode("FA & [MASK] A ¥ = . ")

>>>ids
[2,1325,9, 4,14, 3596, 8, 3]

ID of [MASK] is 4, so ids[3] is [MASK]



>>> ids = torch.tensor(ids).unsqueeze(0)
>>> g = model(ids)

1

a is a tuple, its size is 1.

>>> a[0].shape
torch.Size([1, 8, 32000])

al0][0][k][m] means the probability that
k-th word in input is m-th word in ‘vocab.txt’
whose size is 32000.



>>> b = torch.topk(al0][0][3],k=5)

L]

3rd-word in input is [MASK]

b is tuple, and its size is 2.
b[0] is a value, and b[1] is the index.

>>> ans = tknz.convert ids to tokens(b[1])

>>> ans
Yy A =" B, B BT, RE]
( soccer, baseball, music, you, movie )



_ 3
Use of BERT
through transtormers




Document classification

Data set: [livedoor news corpus |

https://www.rondhuit.com/download.html#ldcc

9 category news articles
We use the headline (1 sentence) as data.

- pick up 100 training data and 100 test data
from each category

- totally, 900 training data and 900 test

- learn the model by training data, and
test the model by test data



Single sentence task

Class
Label

DENEN
e E E, (=
A o, o ..-‘n.'_ o

e & o i g

[CLE] Tok 1 Tok 2 Tok M

Single Sentence

Learn the liner transfer W from the vector C of [CLS] to
a class label. At the same time, BERT is fine-tuned.

softmax(CW ")



Model Definition

class DocCls(nn.Module):
def init  (self,bert):
super(DocCls, self). _init_ ()
self.bert = bert
self.cls=nn.Linear(768,9)
def forward(self,x):

bout = self.bert(x)

bs = len(bout[0])

W0 = | bout[0][i][0] foriin range(bs)]
h0 = torch.stack(h0,dim=0)
h1 = self.cls(h0)
return hl




Model setting

config = BertConfig.from_json_file('config.json")
bert = BertModel.from_pretrained('pytorch_model.bin’,
config=config)

model = DocCls(bert)

The rest is the same as always.

optimizer = optim.SGD(model.parameters(),Ir=0.01)
criterion = nn.CrossEntropyLoss()




Fine-tuning

If pretrained BERT is included in the whole model,
fine-tuning is easy.
It is same as a regular learning program.

4 But, learning time is much.

I the task is simple like document classification,
feature-based or learning of only upper layers
of BERT is enough.




Switch to Feature-basea

class DocCls(nn.Module):
def init  (self,bert):
super(DocCls, self)._ iad
self.bert = bert
self.cls=nn.Linear(768,9)
def forward(self x):
bout = self.bert(x)
bs = len(bout[0]
hO = [ bout[0][i]
hO = torch.stack
hl = self.cls(h0)
return hl

)
[0] foriin range(bs)]
(h0,dim=0)

All you have to do is
to freeze this part.



1ips of freeze

class DocCls(nn.Module):
def _init  (self,bert):
super(DocCls, self
self.bert = bert
self.cls=nn.Linear(768,9)
def forward(self,x):
bout = self.bert(x)
bs = len(bout[0
hO = [ bout[0][i
hO = torch.stac
h1l = self.cls(hO
return hl

#” 1nit

]
]
k
)

%

)
0] foriinrange(bs)]
(h0,dim=0)

Freezing parameters
are so many.

Learning parameters
are a little.

First all parameters ar@
frozen, and then only
learning parameters
are returned to active.




# all parameters are frozen

for name, param in model.named_parameters():
param.requires_grad = False

# only parameters in ‘cls’ are returned to active

for name, param in model.cls.named _parameters():
param.requires_grad = True



-ine-tuning of only upper layers

=

[ cls

=

BERT

—

S—

| +—

/ only these layers
]\

Learning for

Lower layers
are frozen



Parameter names in BERT

We have to know parameter names of the model when
only part of the model parameters is learned or frozen.
In PyTorch, we can confirm them by printing the model.

config = BertConfig.from_json_file(‘config.json")
bert = BertModel.from_pretrained('pytorch_model.bin’,
config=config)

model = DocCls(bert)
print(model)




DocCls(
(bert): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32000, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(

O Berfileyer © o o) This is 12 layers of

(11): BertLayer( - - +) multi-head attentions.
(pooler): BertPooler(
(dense): Linear(in_features=768, out features=768, bias=True)
(activation): Tanh()
)
)

(cls): Linear(in_features=768, out features=9, bias=True)

)




(encoder): BertEncoder( _ _
(layer): ModuleList( 0-th multi-head Attention
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(

(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)

)

(output): BertSelfOutput(

(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)

(intermediate): Bertlntermediate(
(dense): Linear(in features=768, out features=3072, bias=True)

)

(output): BertOutput(
(dense): Linear(in features=3072, out features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(dropout): Dropout(p=0.1, inplace=False)
)

)




fine-tuning of only upper lavers

Parameter names are important.
All parameters are frozen, and parameters of
only upper layers are returned to active.

for na, pa in model.bert.encoder.layer[-1].named_parameters():

pa.requires_grad = True

Multi-head attention in BERT
-1 means the top layer
-2 means the one layer below the top layer



Parameters given to optimized function

Easy if they are all parameters of the model.

optimizer = optim.SGD(model.parameters(),Ir=0.01)

As follow if they are only part of parameters

/optimizer = optim.SGD([ N
{'params':model.bert.encoder.layer[-1].parameters(),
'"r':0.001},
{'params':model.cls.parameters(),
'"r":0.01}])

\_ /




Following is a sample program which
top 2 layers of BERT and the classification layer
are learned.

import torch

import torch.nn as nn

import torch.optim as optim
import torch.nn.functional as F
import numpy as np

from transformers import BertModel, BertConfig
import pickle

config = BertConfig.from_json_file('../tohoku/config.json")
bert = BertModel.from_pretrained('../tohoku/pytorch_model.bin',config=config)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")



# Data setting

data = pickle.load(open('train.pkl','rb"))

cls =[]

sens = []

foriin range(len(data)): _
cls.append(datal[i][0]) For batch processing,
dt = datali][1] length of a sentence is
while len(dt) < 50: fixed to 50 by padding.

dt.append(0.0)
dt = torch.Tensor(dt)
sens.append(dt)

xs = torch.stack(sens,dim=0).type(torch.long).to(device)
ys = torch.LongTensor(cls).to(device)



# Define model

class DocCls(nn.Module):

def _init_ (self,bert):
super(DocCls, self). _init_ ()
self.bert = bert
self.cls=nn.Linear(768,9)

def forward(self,x):
bout = self.bert(x)
bs = len(bout[0])
hO = [ bout[0][i][0] foriin range(bs)]
hO = torch.stack(h0,dim=0)
hl = self.cls(h0)
return hl

model = DocCls(bert)
model.to(device)



for name, param in model.named_parameters():
param.requires_grad = False

for name, param in model.cls.named_parameters():
param.requires_grad = True

for name, param in model.bert.encoder.layer[-1].named_parameters():
param.requires_grad = True

for name, param in model.bert.encoder.layer[-2].named_parameters():
param.requires_grad = True

# optimizer = optim.SGD(model.parameters(),Ir=0.1)

optimizer = optim.SGD([
{'params':model.bert.encoder.layer[-2].parameters(), 'lr':0.0005},
{'params':model.bert.encoder.layer[-1].parameters(), 'lr':0.001},

{'params':model.cls.parameters(), 'lr':0.1}])

criterion = nn.CrossEntropyLoss()



# Learn

n = len(data)
bs =10

for ep in range(1,51):

idx = np.random.permutation(n)

for jin range(0,n,bs):
xtm = xslidx[j:(j+bs) if (j+bs) < n else n]]
ytm = yslidx[j:(j+bs) if (j+bs) < n else n]]
output = model(xtm)
loss = criterion(output,ytm)
print(ep, j, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (ep %5 ==0):
outfile = "dcls2-" + str(ep) + ".model"
torch.save(model.state dict(),outfile)
print(outfile," saved")



Result of the experiment
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SertForsSeqguenceClassification

The model generated from this class

is added one Linear layer connected to
CLS output of BERT.

- class number is variable

- regression is also available

- there are some pretrained models
for famous tasks.

This is useful for simple classification tasks.



4 ways of use of BERT
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(c) Question Answering Tasks:

SQuAD v1.1
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Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColA
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Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER



Fxamples in Hugging Face

https://huggingface.co/transformers/examples.html

The Big Table of Tasks

Example Trainer TFTrainer pytorch-
Task datasets support support lightning Colab

language-modeling Raw text - -
GLUE,

text-classification XNLI
CoNLL

token-classification NER =
SWAG,

multiple-choice RACE, =
ARC

question-answering SQuAD - -

text-generation - nf‘a nfa nfa

distillation All - = - _



| earning for GLUE

We can use run_glue.py in examples
of transformers.

(Note) It is not so difficult to make
it yourself.

For some tasks, it takes much time.



#!/bin/bash
export GLU E_DIR=./g|ue_daV
export TASK_NAME=MNL]|

python3 run_glue.py ¥
--model_type bert ¥
--model _name_or_path model ¥
--task_name $TASK NAME ¥
--do_train ¥
--do_eval ¥
--data_dir $GLUE_DIR/$TASK _NAME ¥
--max_seq_length 128 ¥
--learning_rate 3e-5 ¥
--num_train_epochs 3.0 ¥
--output_dir ./output/$TASK_NAME ¥
--overwrite_output_dir ¥
--logging_steps 50 ¥
--save_steps 200

Name of
the task



Use of pretrained models for tasks

There are some pretrained models for famous
tasks like GLUE.

https://huggingface.co/models

~ HUGGING FACE

L Back to home

All Models and checkpoints

Also check out our list of Community contributors €2 and
Organizations @.

ISearCh models... Tags: All»  Sort: Most downloads

bert-base-multilingual-cased

Jpluftf-xIm-roberta-hase



Search by

All Models and checkpoints )
MNLI”

Also check out our list of Community coniri
Organizations @.

mnli| Tags:All~  Sort: Default ~

canwenxu/BERT -of - Theseus-MhL I

facebook bart - larze-mnl |

praj iwall/albert -base-v1-mnl |

roberta-larze-mnl i

It looks useable.



- HUGGING FACE

S=ck to all mod=ls

Model: facebook/bart-largze-mnli

] usk Dt

Hosted inference 4P 0

Here, a code to use
S this model is shown.

(% f=cebook/bart-larpe-mnl

3 l ) 133 a2 faa : ::F'_-::r:-.

| But, sometimes you need

Do to change it.

Contributed by
Facebook 2l S
1 tesm mesmber - 12 models
How to use this model directly from the @ vansforsen Ghrary:

fram transfarmars lwpart AutaTakanlrar, Autaladal

takanlrar = AutaTakan!rar. fram_pratralnad |"facabaak, bart-

larga-mnl | )
madal = sutaladal. fram_pratrainad |"facabaak/bart-1argq-
mnll”)

Listadl® a i recciel ¢+ Sam raea ool fia



My example code for MNLI.

from transformers import BertConfig, BertTokenizer, ¥
BertForSequenceClassification

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained(
"facebook/bart-large-mnli",num_labels=2)

sl = “The extentof + - + on accessing the funds."
s?2 = "Many people would be - -+ + over their own money."

encoding = tokenizer.encode_plus(sl, s2)
input_ids, token_type_ids = encoding["input_ids"],¥
encoding|“token_type_ids”]

out = model(torch.tensor(linput_ids]),
token_type_ids=torch.tensor([token type ids]))




— = _—— = - — - -

You Should probably lRHl\ thlS modol on a down_stroam task to be able to use it for predictions @
sand inference.

>>> s1 = “The extent of the behavioral effects would depend in part on the structure of the inde
sividual account program and any limits on accessing the funds.”
>>> 82 = “Many people would be very unhappy to loose control over their own money.”

>>> encoding = tokenizer. encode plus(sl, s2)

>>> input_ids, token type ids = encoding[”input_ids”], encoding[”token type ids”]

>>> out = model (torch. tensor ([input_ids]), token_type_ids=torch. tensor ([token_type_ids]))
>>> out

(tcnior([[0.0715, 0.1829]], grad_fn=<AddmmBackward>),)

>0

[——] S¥sx— *Python* Bot L?77? (Inferior Python:run Shell-Compile) 3:34F# 0.49

(tensor([[0.0715, 0.1829]], grad_fn=<AddmmBackward>),)

/ N

Yes

‘ S1 implies S2.




L earning of SOUAD

We can use run_squad.py in examples of
transformers.

(Note) It may be difficult to make it
yourself.




Where is it?

https://github.com/huggingface/transformers/tree/
master/examples/question-answering

README.md

SQuUAD

Based on the script run_squad.py .

Fine-tuning BERT on SQuAD1.0

This example code fine-tunes BERT on the SQUAD1.0 dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla
V100 16GB. The data for SQUAD can be downloaded with the following links and should be saved in a $SQUAD_DIR directory.

e train-v1.1json
e dev-v1.1json

e evaluate-v1.1.py
And for SQUAD2.0, you need to download:

e train-v2.0.json

e dev-v2.0json



#1/bin/bash
export SQUAD_DIR=/path/to/SQUAD —

python3 run_squad.py ¥
--model_type bert ¥
--model_name_or_path bert-base-uncased ¥
--do_train ¥
--do_eval ¥
--train_file $SQUAD_DIR/train-v1.1.json ¥
--predict_file $SQUAD_DIR/dev-vl.1.json ¥
--per_gpu_train_batch_size 12 ¥
--learning_rate 3e-b ¥
--num_train_epochs 2.0 ¥
--max_seq_length 384 ¥
--doc_stride 128 ¥
--output_dir /tmp/debug_squad/

Change it
~ to your path.

AN

Auto download
if you don’t have.




Use of pretrained model for SOUAD

https://huggingface.co/transformers/pretrained_models.html

(see details).

24-layer, 1024-hidden, 16-heads, 340M parameters.

The bert-large-uncased-whole-word-masking model fine-tuned

(see details of fine-tuning in the example section).

24-layer, 1024-hidden, 16-heads, 340M parameters
The bert-large-cased-whole-word-masking model fine-tuned on
SQuAD

BERT

(see details of fine-tuning in the example section)

12-layer, 768-hidden, 12-heads, 110M parameters.

bert-large-uncased-whole-word-masking-finetuned-squad

We can use the model by this name.



https://www.dogonews.com/

Memorial Day Celebrations Get Innovative
Amid COVID-19 Pandemic

Memorial Day celebrations usually involve parades,

MEMO RI AL flag ceremonies, and other formal public recognitions

D AY to honor the brave men and women of the American
Armed Forces who have sacrificed their lives in the line
REMEMBERING & HONORING ALL WHO SERVED of duty. This includes those in the US Army, Navy,
* * * * Marine Corps, National Guard, Air Force, and the
* Coast Guard. However, the COVID-19 pandemic social

distancing requirement is causing American cities and
towns to cancel the beloved traditions and find new
ways to honor their fallen heroes. Here are a few
innovative festivities planned for the holiday, which
will be observed on May 25, 2020.

(Q) What caused celebrations to be cancelled?



from transformers import BertConfig, BertTokenizer, ¥
BertForQuestionAnswering
import torch

## following two models are automatically downloaded

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

model = BertForQuestionAnswering.from_pretrained(
'‘bert-large-uncased-whole-word-masking-finetuned-squad’)

## give question and text

question = "What caused celebrations to be cancelled?"
text = “Memorial Day celebrations « + - on May 2b, 2020"



encoding = tokenizer.encode_plus(question, text)

input_ids, token_type_ids = encoding["input_ids"], ¥
encoding["token_type_ids"]

# score of start position and end position of the span

start_scores, end_scores = model(torch.tensor([input_ids]),¥
token_type_ids=torch.tensor([token_type_ids]))

all_tokens = tokenizer.convert_ids_to_tokens(input_ids)

answer = '"join(all_tokens[torch.argmax(start_scores) : ¥
torch.argmax(end_scores)+1])

print(answer)



>>> text = "Memorial Day celebrations usually involve parades, flag ceremonies, and other formal
s« public recognitions to honor the brave men and women of the American Armed Forces who have sacr
sificed their lives in the line of duty. This includes those in the US Army, Navy, Marine Corps,
sNational Guard, Air Force, and the Coast Guard. However, the COVID-19 pandemic social distancing
¢ requirement is causing American cities and towns to cancel the beloved traditions and find new
sways to honor their fallen heroes. Here are a few innovative festivities planned for the holiday
s, which will be observed on May 25, 2020”

>>> encoding = tokenizer. encode plus(question, text)

>>> input_ids, token type ids = encoding[”input ids”], encoding[”token type ids”]

>>> start_scores, end scores = model (torch. tensor ([input_ids]), token type ids=torch. tensor ([toks
sen_type_ids]))

>>> all_tokens = tokenizer. convert_ids_to_tokens (input_ids)

>>> answer = . join(all tokens[torch. argmax(start scores) : torch. argmax(end scores)+1])
22> answer

"co #ftvid - 19 pan #fide #Hmic social di ##stan H#cing requirement’

>>> |}

[——] S¥sx— *Python¥ L?? (Inferior Python:run Shell-Compile) 3:367-#% 0.39

answer

'co ##vid - 19 pan ##de ##mic social di ##stan ##cing requirement’

For (Q) What caused celebrations to be cancelled?
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Downsizing of
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Problems of BERT

Some problems of BERT are pointed out.

Following are my interest.

[(1) Size of the model J@ Léi'tl?o';‘ this

(2) Limitation of input length

(3) Domain adaptation of BERT

| talk about the use of transformers for (1) problem



Problem of size of BERT

BERT is so powerful, but the size is too big.

BERT-base 110 M parameters
BERT-large 340 M parameters

cf) GPT-3 17.5 G parameters

jl> Need much time and memory to learn
Slow inference




Downsizing of BERT

(1) Quantization
Q8BERT

(2) Distillation
DistilBERT, MobileBERT, TinyBERT

(3) Pruning
Poor Man's BERT

(4) Others
ALBERT



Q8BERT

Computer Science > Computation and Language

[Submitted on 14 Oct 2019 (v1), last revised 17 Oct 2019 (this version, v2)]

Q8BERT: Quantized 8Bit BERT
Ofir Zafrir, Guy Boudoukh, Peter I1zsak, Moshe Wasserblat

Recently, pre-trained Transformer based language models such as BERT and GPT, have shown great improvement in many
Natural Language Processing (NLP) tasks. However, these models contain a large amount of parameters. The emergence of
even larger and more accurate models such as GPT2 and Megatron, suggest a trend of large pre-trained Transformer models.
However, using these large models in production environments is a complex task requiring a large amount of compute, memory
and power resources. In this work we show how to perform guantization-aware training during the fine-tuning phase of BERT in
order to compress BERT by 4 with minimal accuracy loss. Furthermore, the produced quantized model can accelerate
inference speed if it is optimized for 8bit Integer supporting hardware.

Comments: 5 Pages, Accepted at the 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurlPS 2019
Subjects:  Computation and Language {cs.CL); Machine Learning (cs.LG)
Cite as: arXiv:1910 06188 [es.CL]

{or arXiv:1910.06186v2 [es.CL] for this version)

https://arxiv.org/abs/1910.06188



Abstract of OSBERT

All GEMM (General Matrix Multiply) operations in
BERT Fully Connected (FC) and Embedding layers
are quantized to 8bit.

Operations required high accuracy (like Softmax or
Normalization) are remained 32bit.

h 4

Keep 99% performance of 32bit BERT.
Reduce used memory to 25%.



OAT (Quantized-Aware Training)

When fine-tune BERT, QAT is used

<i Q8BERT

QAT : learning method based on the use of
quantization when inference

B. Jacob, et al., "Quantization and training of neural networks
for efficient integer-arithmetic-only inference", In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2/7/04-2713, 2018.



Fake Quantization (when fine-tuning )

’:\ Output \)

{ Fake Quantization ]

/”'r__.__ﬁ""“\ 77\
\BES 4 :{\‘__,, )
( GEMM 1

L Fake Quantization J { Fake Quantization

\/\ Input ) (\Hweight'/'\)

= . -

When forward, quantized value are used.
When back propagation, original value (not quantized
value) are used.



Fake Quantization (when inference)

|nt8/FP32

Re/De uantize

int32

int32

[ GHMM }

inV ints
[ Fake Quantization } @




Result of experiments

Table 1: GLUE tasks and SQuAD results. Each score 1s evaluated on the publicly available develop-
ment set for the task using the metric specified for each task. For each task we present the score of a
baseline (FP32) model, of a Quantization-Aware Training (QAT) model quantized to 8bit, and of a
Dynamically Quantized (DQ) to 8bit model. Large means those tasks were trained with BERT-Large
architecture.

Dataset Metric BERT baseline | QAT BERT | DQ BERT
“ accuracy (STD) | 8bit (STD) 8bit (STD)
CoLA Matthew’s corr. 58.48 (1.54) 58.48 (1.32) |56.74 (0.61)
MRPC Fl 90 (0.23) 89.56 (0.18) | 87.88 (2.03)
MRPC-Large FI 90.86 (0.55) 90.9 (0.29) |88.18(2.19)
OQNLI Accuracy 90.3 (0.44) 90.62 (0.29) |89.34 (0.61)
OQNLI-Large  Accuracy 91.66 (0.15) 91.74 (0.36) |88.38 (2.22)
QQP Fl 87.84 (0.19) 87.96 (0.35) |84.98 (0.97)
RTE Accuracy 69.7 (1.5) 68.78 (3.52) |63.32(4.58)
SST-2 Accuracy 92.36 (0.59) 92.24(0.27) 191.04 (0.43)
STS-B Pearson corr. 89.62 (0.31) 80.04 (0.17) |87.66(0.41)
STS-B-Large  Pearson corr. 90.34 (0.21) 90.12 (0.13) |83.04 (5.71)
SQuADvI1.l  Fl 88.46 (0.15) 87.74 (0.15) |80.02(2.38)




Docs » Quantize BERT with Quantization Aware Training

B Quantized BERT

Overview

Quantization Aware Training Quantize BERT with Quantization Aware
Results Training

Running Modalities

References OverVieW
Transformers Distillation
Sparse Neural Machine Translation BERT - Bidirectional Encoder Representations from Transformers, is a
language representation model introduced last year by Devlin et al (11
It was shown that by fine-tuning a pre-trained BERT model it is possible
Aspect Based Sentiment Analysis to achieve state-of-the-art performance on a wide variety of Natural
Language Processing (NLP) applications.

Set Expansion

http://nlp_architect.nervanasys.com/quantized_bert.html



Training

To train Quantized BERT use the following code snippet:

nlp-train transformer_glue \
--task_name mrpc \
--model_name_or_path bert-base-uncased \
--model_type quant_bert \
--learning_rate 2e-5 \
--output_dir /tmp/mrpc-8bit \
--evaluate_during_training \
--data_dir /path/to/MRPC \
--do_lower_case

The model is saved at the end of training in 2 files:

1. A model saved in FP32 for further pytorch model.bin
2. A quantized model for inference only quant_pytorch_model.bin



3 Implementation

Our goal is to quantize all the Embedding and FC layers in BERT to Int8 using the method described
in Section 2] For this purpose we implemented quantized versions of Embedding and FC layers.
During training, the Embedding layer returns fake quantized embedding vectors, and the quantized
FC performs GEMM between the fake quantized input and the fake quantized weight, and then
accumulates the products to the bias which is untouched since the bias will be later quantized to
Int32. During inference, the quantized Embedding layer returns Int8 embedding vectors, and the
quantized FC performs GEMM between Int8 inputs accumulated to the Int32 bias which 1s quantized
using the weights’ and activations’ scaling-factors as described in [S]. Although the bias vectors are
quantized to Int32 values. they only make up for a fraction of the amount of parameters in the model.

Our implementation of Quantized BERT 1s based on the BERT implementation provided by the

PyTorch-Transformers] library. To implement quantized BERT we replaced all the Embedding

and FC layers in BEKT to the quantized Embedding and FC layers we had implemented. Operations
that require higher precision, such as Softmax, Layer Normalization and GELU, are kept in FP32,



DistilBERT

https://medium.com/huggingface/distilbert-8cf3380435b5

Author of the paper

version of BERT

; Victor Sanh |: Follow :|
. Aug 28 - 10 min read . 4 ﬁ A




Distilation methoo

Standard Hinton’s method

Use of Dark Knowledge.
Optimize the softmax distribution with
temperature parameters by KL loss.

How can we copy this dark knowledge?

In the teacher-student training, we train a student network to mimic the
full output distribution of the teacher network (its knowledge).

I{L(pHQ) — IOJ B sz * IOJ pr Zp3 * {OJ q?

l-Q



Hinton's method

0.60 politics

B E RT 0.30 economy
0.08 i
; teacher soclety
ocument | [ ' model ' 001 @ entertainment
0.01 sports
learn to fit soft target loss
distribution
0.20 politics
student - 0.35 economy
model 0.20 society

D|St||BERT 0.15 entertainment

0.10 sports



Initial model

BERT

Output

[+ )

| Layer-11 Multi-head Attention K

| Layer-10 Multi-head Attention

»

\ Layer-9 Multi-head Attention

»

| Layer-8 Multi-head Attention |

.

»

| Layer-7 Multi-head Attention

»

| Layer-6 Multi-head Attention

N

N

»

| Layer-5 Multi-head Attention

»

[ Layer-4 Multi-head Attention

»

| Layer-3 Multi-head Attention

»

| Layer-2 Multi-head Attention -1

»

| Layer-1 Multi-head Attention

Output

‘ Layer-5 Multi-head Attention?

"*| Layer-4 Multi-head Attention ‘

»

— | Layer-3 Multi-head Attention

»

L» | Layer-2 Multi-head Attention

»

/| Layer-1 Multi-head Attention

»

Copy

Layer-0 Multi-head Attention |/

\.

Input

| Layer-0 Multi-head Attentiory

Input

DistilBERT



Result of experiments (1)

Macro ColLA MNLI | MNLI-MM MRPC
Score mcc acc acc acc f1
GLUE BASELINE (ELMo + BiLSTMs) 68.7 44 1 68.6 (avg) 70.8 82.3
BERT base 78.0 55.8 83.7 84.1 86.3 90.5
DistilBERT 75.2 42.5 81.6 81.1 82.4 88.3
QNLI QaQP RTE SST-2 STS-B WNLI
acc acc f1 acc acc pearson | spearmanr acc
7.1 88.0 84.3 53.4 91.5 70.3 70.5 56.3
91.1 90.9 a7.7 68.6 92.1 89.0 88.6 43.7
85.5 90.6 ar.7 60.0 92.7 84.5 85.0 55.6

Keep about 95% performance of original BERT.
Much better than ELMo+BiLSTM.




Result of experiments (2)

Nb of parameters |Inference Time
(millions) (s)
GLUE BASELINE (ELMo + BiLSTMs) 180 895
BERT base 110 668
DistiBERT 66 410

Parameters are reduced to about 60% and
inference time to about 60% of original BERT




https://huggingface.co/transformers/model_doc/distilbert.html

B DistilBERT -

" sonn | 2 woons [ @ rorom

Docs » DistilBERT View page source

DistilBERT

Overview

The DistilBERT model was proposed in the blog post Smaller, faster, cheaper, lighter: Introducing
DistilBERT, a distilled version of BERT, and the paper DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. DistilBERT is a small, fast, cheap and light Transformer model trained by
distilling Bert base. It has 40% less parameters than bert-base-uncased, runs 60% faster while

preserving over 95% of Bert’s performances as measured on the GLUE language understanding

benchmark.



Poor Man's BERT

BERT for people who don’t have much PC resource

Computer Science > Computation and Language

[Submitted on 8 Apr 2020]

Poor Man's BERT: Smaller and Faster Transformer Models
Hassan Sajjad, Fahim Dalvi, Nadir Durrani, Preslav Nakov

The angoing neural revolution in Natural Language Processing has recently been dominated by large-scale pre-trained Transformer models,
where size does matter: it has been shown that the number of parameters in such a model is typically positively correlated with its
performance. Naturally, this situation has unleashed a race for ever larger models, many of which, including the large versions of popular
models such as BERT, XLNet, and RoBERTa, are now out of reach for researchers and practitioners without large-memory GPUs/TPUs. To
address this issue, we explore a number of memory-light model reduction strategies that do not require model pre-training from scratch. The
experimental results show that we are able to prune BERT, RoBERTa and XLNet models by up to 40%, while maintaining up to 98% of their
original performance. We also show that our pruned models are on par with DistiBERT in terms of both model size and performance. Finally,
our pruning strategies enable interesting comparative analysis between BERT and XLNet.

https://arxiv.org/abs/2004.03844



Pruning layers

[ embedding Layer [ Encoder Layer [ Task-Specific Layer
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Experiment of removing b layers

BERT ¥LNet
as
E!ert base (12 layers) XLMNet base (12 layers)

i DistilBERT (6 layers) . DistilBERT (6 layers)

B
z
,§ B0

75

70

65

Evan Symmelric  Contribution Battam
Altarriate Nlumds

Figure 2: Average classification performance on GLUE tasks when using different layer-dropping strategies and
when removing different numbers of layers for BERT and XLNet. Note that the contribution-based strategy selects
layers based on the similarity threshold. In some cases it does not select (2,4 or 6) number of layers, which resulis
in some missing bars in the figure.

Top Layer Dropping gets about same performance with
DistilBERT of the same size.

Much smaller computational resource than DistilBERT



ALBERT

OpenReview

< Go to ICLR 2020 Conference homepage

ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations =

Anonymous

26 Sep 2019 (modified: 26 Sep 2019)  ICLR 2020 Conference Blind Submission  Readers: (@ Everyone  Show Bibtex

Keywords: Natural Language Processing, BERT, Representation Learning

TL:DR: A new pretraining method that establishes new state-of-the-art results on the GLUE, RACE, and SQUAD benchmarks while having fewer parameters compared
to BERT-large.

Abstract: Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some
point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these
problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical
evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on
modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-
the-art results on the GLUE, RACE, and SQUAD benchmarks while having fewer parameters compared to BERT-large.

https://openreview.net/forum?id=H1eA7AEtvS



https://openreview.net/forum?id=H1eA7AEtvS

Reduce of parameters

=

ga—

Cross-Layer Parameter Sharing

Each layer parameters are shared

Factorized Embedding Parameterization

Word embedding layer is approximated
by multiplying the matrices



Factorized Embedding Parameterization

V: vocaburary, H: dimension of word embedding

j‘> VH parameters

Ex) BERT-large, V=30000. H=1024
— 30,720,000 parameters

VH matrix — (VE)*(EH)

j‘> VE + EH parameters

Ex) E=128, V=30000. H=1024
— 3,971,072 parameters (—13%)



Result of experiments

Performance gets a little down

Model Parameters SQuADI.1 SQuAD2.0 MNLI SST-2 AC Avg | Speedup
base [0O8M 90.4/83.2 80.4/77.6 84.5 92.8 8.2 (| 82.3 17.7x
BERT large 334M 92.2/85.5 85.0/82.2 86.6 93.0 73 8.2 3.8x
xlarge 1270M 86.4/78.1 75.5/72.6 81.6 90.7 54.3\,| 76.6 1.0
base [2M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 (| 80.1 21.1x
ALBERT large | 8M 90.6/83.9 82.3/79.4 83.5 91.7 68.5 [ 3824 6.5x
xlarge 60M 92.5/86.1 86.1/83.1 86.4 92.4 74.8 | 83.5 2.4x
xxlarge 235M 94.1/88.3  88.1/85.1 88.0 95.2 82.3 (| 88.7 1.2x

Table 3: Dev set results for models pretrained over BOOKCORPUS and
Here and everywhere else, the Avg column is computed by averaging
tasks to its left (the two numbers of F1 and EM for each SQuAD

We can build the big size ALBERT.

In this case, it gets SOTA.
Note that parameters of ALBERT-xxlarge
is less then parameters of BERT-large.

ikipedia for 125k steps.
¢ scores of the downstream
first averaged).



https://huggingface.co/transformers/model_doc/albert.html

8 ALBERT
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Docs » ALBERT View page source

ALBERT

Overview

The ALBERT model was proposed in ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
Radu Soricut. It presents two parameter-reduction techniques to lower memory consumption and

increase the training speed of BERT:



ALBERT vs. DistilBERT

ALBERT

DistilBERT

Average SQUADI1 SQUAD2.0 MNLI SST-2 RACE
V2
ALBERT-base 823 902/832  821/793
ALBERT-large 857 918/852  84.9/818
ALBERT-xlarge  87.9 929/864  879/841 879 954 807
ALBERT-xdarge  90.9 946/891  898/869 906 968 868
VS
Model h::;:: CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B  WNLI
BERT-base 77.6 489 843 886 893 895 713 917 912 437
[ DistilBERT 76.8 204l 818 fooo 902 892 e29f 927 foo7 244

ALBERT is better than DistilBERT



Conclusion

- Introduced BERT which is powerful pretrained model.

- Hugging Face’s transformers is very useful
when we use BERT.

- showed examples to use BERT through the transformers

- BERT has some problems.

- One of them is the size of BERT.

- showed popular methods downsizing BERT.



Thank you very much!

Questions and comments are very welcome.
But | may not be able to answer them quickly
because of my poor English. Thus, e-mail is
welcome, too. Itis OK even after this conference.
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