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A b s t r a c t  

This paper describes a system which uses a deci- 
sion tree to find and classify names in Japanese 
texts. The decision tree uses part-of-speech, 
character type, and special dictionary informa- 
tion to determine the probability that a particu- 
lar type of name opens or closes at a given po- 
sition in the text. The output is generated from 
the consistent sequence of name opens and name 
closes with the highest probability. This system 
does not require any human adjustment. Ex- 
periments indicate good accuracy with a small 
amount of training data, and demonstrate the 
system's portability. The issues of training data 
size and domain dependency are discussed. 

1 I n t r o d u c t i o n  

For some NLP applications, it is important to 
identify, "named entities" (NE), such as person 
names, organization names, time, date, or money 
expressions in the text. For example, in informa- 
tion extraction systems, it is crucial to identify 
them in order to provide the knowledge to be 
extracted, and in machine translation systems, 
they are useful for creating translations of un- 
known words or for disambiguation. However, it 
is not easy to identify these names, because they 
involve unknown words, and hence the strategy 
of listing candidates won' t  work. Also, it is some- 
times hard to determine the category of proper 
nouns, like distinguishing a person name from 
a company name. These phenomena are often 
different from domain to domain. One domain 
may use a special pattern which is not found in 
other domains. 

In this paper, we will present a supervised 
learning system whicil finds and classifies named 
entities in Japanese newspaper texts. Recently, 
several systems have been proposed for this task, 
but many of them use hand-coded patterns. Cre- 
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ating these patterns is laborious work, and when 
we adapt these systems to a new domain or a 
new definition of named entities, it is likely to 
need a large amount of additional work. On 
the other hand, in a supervised learning system, 
what is needed to adapt the system is to make 
new training data.. While this is also not a very 
easy task, it would be easier than creating com- 
plicated rules. For example, based on our expe- 
rience, 100 training articles can be created in a 
day. 

There also have been several machine learning 
systems applied to this task. However, these ei- 
ther 1) partially need hand-made rules, 2) have 
parameters which must be adjusted by hand, or 
3) do not perform well by fully automatic means. 
Our system does not work fully automatically 
and also needs special dictionaries, but performs 
welt and does not have parameters to be adjusted 
by hand. We will discuss one of the related sys- 
tems in a later section. 

The issue of training data size will be dis- 
cussed based on experiments using different 
sizes of training data. In order to demonstrate 
the portability of our system, we ran the system 
on a new domain with a new type of named en- 
tity. The experiment shows that the portability 
of the system is quite good and the performance 
is satisfactory. 

2 T a s k  

The task is to find and classify several types of 
named entity items in texts, shown in Table 1. 
We use the task definition provided in the MET- 
2 guidelines (Multilingual Entity Task; the for- 
mal definition will be published in May 1998). 
"Executive position" is a new category which is 
used in the portability experiment only and is 
not part of the MET definition. 

There are some idiosyncratic definitions. For 



Named Entity Examples 
Organization 

Person 
Location 
Position 

Date 
Time 

Money 
Percent 

Matsushita, M atsushita 
Electric Industrial Co.Ltd. 
Mr. Matsushita, Mike 
U.S.A., Matsushita 
President, Professor 
March 5, 21st century 
12:09, noon, morning 
100,000 yen, 1 ECU 
10%, a quarter 

Table h Named Entities (NE) 

example, a sub-organization expression like "Ex- 
ecutive Staff" should be identified only when it 
follows an organization in proper expression. So, 
in the expression "Defense Ministry's Executive 
Staff", "Executive Staff" should be identified; 
however, it should not be identified if it appears 
alone in a sentence. Also, a country expression 
at the head of an organization should be iden- 
tified if it is expressed by one Chinese charac- 
ter, but it should not when it is expressed by 
Katakana characters. Although we find some id- 
iosyncratic definitions in the guidelines, we will 
use them, because there are such difficulties in 
nature and we can't  easily find another reason- 
able definition. 

3 A l g o r i t h m  

In this section, the algorithm of the system will 
be presented. There are two phases, one for 
creating the decision tree from training data 
(training phase) and the other for generating the 
tagged output based on the decision tree (testing 
phase). We use a Japanese morphological ana- 
lyzer, JUMAN (JUMAN, 1997) and a program 
package for decision trees, C4.5 (Quinlan, 1993). 
We use three kinds of feature sets in the decision 
tree: 

• Part-of-speech tagged by JUMAN 
We define the set of our categoriefi based on 
its major category and minor category. 

• Character type information 
Character type, like Kanji, Hiragana, 
Katakana, alphabet, number or symbol, etc. 
and some combinations of these. 
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• Special Dictionaries 
Lists of entities created based on JUMAN 
dictionary entries, lists found on the Web or 
based on human knowledge. Table 2 shows 
the number of entities in each dictionary. 
Organization name has two types of dictio- 
nary; one for proper names and tile other 
for general nouns. An example of the latter 
case is "Executive Staff", mentioned before. 

name- name name- 
Entity prefix suffix 
Org. 9 7018/49 96 

Person 0 17851 7 
Loc. 0 14863 61 

Position 0 75 0 
Date 24 198 29 
Time 2 25 5 

Money 22 0 39 
Percent 0 99 3 

Table 2: Special Dictionary Entry 

Creating the special dictionaries is not very easy, 
but it is not very laborious work. The initial dic- 
tionary was built in about a week. In tile course 
of the system development, in particular while 
creating the training corpus, we added some en- 
tities to the dictionaries. 

The decision tree gives an output  for the be- 
ginning and tile ending position of each token. It 
is one of the 4 possible combinations of opening, 
continuation and closing for each named entity 
type, or having no named entity, shown in Table 
3. When we have 8 named entity types, there 
are 33 kinds of output .  For example, if an or- 

output  

OP-CL 

OP-CN 

CN-CN 

CN-CL 

none 

beginning ending token 
of token of token is 
opening 
opening 

cont. 
cont. 
none 

closing 
cont. 
cont. 

closing 
none 

NE itself 
starting NE 

middle of NE 
ending NE 

not NE 

Table 3: Five types of Output  

ganization name covers three words, h. B and C~ 



/ / 

and the next word D has no named entity, then 
we will have the following data: 

A : org-OP-CN 

B : org-CN-CN 

C : org-CN-CL 

D : none 

Note that there is no overlapping or embedding 
of named entities. An example of real data is 
shown in Appendix A. 

There could be a problem, in the testing phase, 
if we just  use the deterministic decision created 
by the tree. Because the decisions are made lo- 
cally, the system could make an inconsistent se- 
quence of decisions overall. For example, one 
token could be tagged as the opening of an orga- 
nization, while the next token might be tagged 
as the closing of person name. We can think of 
several strategies to solve this problem (for ex- 
ample, the method adopted by (Bennett et al. 
1997) will be described in a later section), but 
we used a probabilistic method. 

There will usually be more than one tag in the 
leaf of a decision tree. At a leaf we don't  just  
record the most probable tag; rather, we keep the 
probabilities of tile all possible tags for that leaf. 
In this way we can salvage cases where ~ tag 
is part of the most probable globally-consistent 
tagging of the text, even though it is not the 
most probable tag for this token, and so would be 
discarded if we made a deterministic decision at 
each token. Note that. we did not apply smooth- 
ing technique, which might be able to avoid the 
data sparseness problem. More about the proba- 
bilistic method will be explained in the next sec- 
tion. 

Tra in ing  P h a s e  

First, the training sentences are segmented 
and part-of-speech tagged by JUMAN. Then 
each token is analyzed by its character type and 
is matched against entries in the special dictio- 
naries. One token can match entries in several 
dictionaries. For example, "Matsush i ta"  could 
match the organization, person anfflocation dic- 
tionaries. 

Using the training data, a decision tree is built. 
It learns about the opening and closing of named 
entities based on the three kinds of information 
of the previous, current and following tokens. 
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The three types of information are tile part-of- 
speech, character type and special dictionary in- 
formation described above. 

Tes t ing  P h a s e  

In the testing phase, the first three steps, to- 
ken segmentation and part-of-speech tagging by 
JUMAN, analysis of character type, and special 
dictionary look-up, are identical to that in the 
training phase. Then, in order to find the proba- 
bilities of opening and closing a named entity for 
each token, the properties of the previous, cur- 
rent and following tokens are examined against 
the decision tree. Appendix 13 shows two exam- 
ple paths in the decision tree. For each token, 
the probabilities of 'none' and the four combina- 
tions of answer pairs for each named entity type 
are assigned. For instance, if we have 7 named 
entity types, then 29 probabilities are generated. 

Once the probabilities for all the tokens in 
a sentence are assigned, the remaining task is 
to discover the most probable consistent path 
through the sentence. Here, a consistent path 
means that for example, a path can't  have 
org-0P-CN and date-0P-CL in a row, but call 
have loc-0P-CN and loc-CN-CL. The output  
is generated from the consistent sequence with 
the highest probability for each sentence. The 
Viterbi algorithm is used in the search; this can 
be run in time linear in the length of the input. 

4 E x a m p l e  

Appendix A shows an example sentence along 
with three types of information, part-of-speech. 
character type and special dictionary informa- 
tion, and information of opening and closing of 
named entities. Appendix 13 shows two example 
paths in the decision tree. For the purpose of 
demonstration, we used the seventh and eighth 
token of the example sentence in Appendix A. 
Each line corresponds to a question asked by 
the tree nodes along the path. The last line 
shows the probabilities of named entity informa- 
tion which have none-zero probability. This in- 
stance demonstrates how the probability method 
works. As we can see, the probability of none for 
the seventh token ( I s u r a e r u  = Israel) is higher 
than that for the opening of organization (0.67 
to 0.33), but in the eighth token ( K e i s a t s u  = 
Police), the probability of closing organization is 



much higher than none (0.86 to 0.14). The com- 
bined probabilities of the two consistent pw:hs 
are calculated. One of these paths makes the 
two tokens an organization entity while along the 
other path, neither token is part of a named en- 
tity. The probabilities are higher in the first case 
(0.28) than that in the latter case (0.09), So the 
two tokens are tagged as an organization entity. 

5 E x p e r i m e n t s  

In this section, the experiments will be de- 
scribed. We chose two domains for the exper- 
iments. One is the vehicle accident report do- 
main. Newspaper articles in the domain report 
accidents of vehicles, like car, train or airplane. 
The other is the executive succession domain, 
articles in this domain report succession events 
of executives, like president, vice president or 
CEO. We have 103 training articles in the acci- 
dent domain, which contain 2.368 NE's and 11 
evaluation articles which were hidden from the 
developer, In the evaluation articles, there are 
258 NE items (58 organization, 30 person, 100 
location, 47 date, 21 time and 2 money expres- 
sions). Also, we have 70 training articles, which 
contain 2,406 NE's and 17 evaluation articles in 
the succession domain. In the evaluation arti- 
cles, there are 566 NE items (113 organization, 
114 person, 67 location. 183 position. 77 date. 1 
time. 9 money and 2 percent expressions). 

5.1  A c c i d e n t  R e p o r t  D o m a i n  

First. we will report on the experiment on the ac- 
cident domain. Basically, this is the initial target 
domain of the system. 

The result is shown in Table 4. The F-scores 
based on recall and precision are shown. 'Re- 
call' is the percentage of the correct answers 
among the answers in the key provided by hu- 
man. 'Precision' is the percentage of the correct 
answers among the answers proposed by the sys- 
tem. 'F-score' is a measurement combining the 
two figures. See (Tipster2, 1996) for more "de- 
tail" definition of F-score, recall and precision. 
They are compared with the results produced 
by JUMAN's  part-of-speech information and the 
average scores in MET1, reported in (Tipster2, 
1996). The result from JUMAN is created based 
on JUMAN version 3.3's output  alone 1. When 

I Latest version may have better performance than the 
results reported here. Also remember that the definitions 

it identifies a sequence of locations, persons or .  
other proper nouns, then we tag the sequence 
with location, person or organization, respec- 
tively. The MET1 evaluation was conducted on 
completely different texts and on a. different do- 
main, so it is not directly comparable, but since 
the task definitions are almost the same, we be- 
lieve it gives a rough point of comparison. Note 
that for the MET1 evaluation, there were about  
300 training articles compared to our 100 train- 
ing articles. Also, they did not report the scores 
by each individual participant. 

Entity Our 
score 

Org. 86 
Person 91 

Loc. 87 
Date 96 
Time ; I 91 

Money 100 
Percent 
Overall 85 

JUMAN MET1 
only ave. score 
56 
63 
51 

73 
77 
82 
94 
93 
95 
96 

Table 4: Result in Accident Report  Domain 

We believe these results are quite good and 
indicate the capability of our system. In terms of 
execution time, the training phase takes about  5 
minutes, of which JUMAN and the decision tree 
creation take most of the time. It takes less than 
a minute to create the named entity output,  and 
again JUMAN takes the bulk of the time. 

5.2 I s sue  o f  T r a i n i n g  Size 

It is quite nice that we can get this level of perfor- 
mance with only about  100 training articles. It 
is interesting to investigate how much training 
data is needed to achieve a good performance. 
We created 8 small training sets of different size, 
and ran the system using these training data. 
Note that we used the same dictionaries for all 
the experiments, which were generated by sev- 
eral means including the items in the entire train- 
ing data. Table 5 shows the results. The size of 
the training set is indicated by the number of ar- 
ticles and the number of NE in the training data. 
It is amazing that the performance is not greatly 
degraded even with 9 articles. Also, even with 

are different. 
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only one article, our system can achieve 68 F- 
score. Actually, the three sets of 1-article train- 
ing data were created from each article in the 
3-article training data, and we can see that the 
performance using tlle 3-article training data. is 
mainly derived from the high performance sin- 
gle article. So, we believe that once you have a 
good coverage dictionaries and some amount of 
standard patterns in the training data, the sys- 
tem can achieve fairly good performance. We 
observed that tile article which gives high perfor- 
mance contains a good variety of many named 
entities. 

Size of 
Training 

103 (2368) 
69 (1586) 
35 (721) 
18 (384) 
9 (216) 
3 (59) 

1 (23/13/23) 

score 

85 
86 
80 
81 
79 
71 

68/21/41 

Table 5: Result for Training Data Size 

zation, location dictionary, etc. We believe 
that these dictionaries can be relatively do- 
main independent. 

2. Modify the program 
Assign a new ID number for the position en- 
tity in the decision tree program and modify 
the input /output  routine accordingly. This 
also took less than an hour. 

In less than two hours for the system modifica- 
tion, and about a day's work for the preparation 
of the training data, the new system becomes 
runnable, Table 6 shows the result of the experi- 
ment. The result is quite satisfactory. However, 

Entity score 
Org. : 72 

Person 88 
Loc. 67 

Position 93 
Date 89 
Time 100 

Money 90 
Percent 100 
Overall 84 

5.3 E x e c u t i v e  S u c c e s s i o n  D o m a i n  
- P o r t a b i l i t y -  

In general, one of the advantages of automatic 
learning systems is their portability. In this sub-- 
section, we will report an experiment of moving 
tile system to a new domain, the executive suc- 
cession domain. Also, in order to see the porta- 
bility of the system, we add a new kind of named 
entity. In this domain, executive positions ap- 
pear very often and it is an important entity 
type for understanding those articles. So, we add 
a new entity class, 'position'. When porting the 
system, only the following two changes are re- 
quired. 

1. Add a new dictionary 
Create a new dictionary for positions. In 
practice, many of them were listed in the 
person prefix in the previous-experiment. 
So we separate them and add several po- 
sition names which appeared in or could be 
inferred from the training data. This took 
less than an hour. Note that we did not 
change any other dictionaries, i.e. organi- 

1 7 5  

Table 6: Result in Executive Succession Domain 

it "is not as good as the result in the previous 
domain, in particular, for organization and lo- 
cation. Observing the output,  we noticed do- 
main idiosyncrasies which we had not thought 
of before. For example, in the new domain, 
there are many Chinese company names, which 
have the suffix "Yuugenkoushi ' .  This is never 
used for Japanese company names and we don' t  
have the suffix in our organization suffix dic- 
tionary. Another interesting example is a Chi- 
nese character "Shou". In Japanese,  the char- 
acter is used as a suffix of official organizations, 
like "Monbu-Shou" (Department of Education), 
but in Chinese it is used as a suffix of location 
names, like "Kanton-Shou" (Canton District). 
In the accident domain, we did not encounter 
such Chinese location names, so we just  had the 
token in the organization suffix dictionary. This 
led to many errors in location names in the new 
domain. Also, we find many unfamiliar foreign 
location names and company names. We believe 
these make the result relatively worse. 



5.4 D o m a i n  D e p e n d e n c y  

As we have training and evaluation data  on two 
different domains, it is interesting to observe the 
domain dependency of the system. Namely, we 
will see how the performance differs if we use 
the knowledge (decision tree) created from a dif- 
ferent domain. We conducted two new exper- 
iments, tagging named entities for texts in 1:he 
succession domain based on the decision tree cre- 
ated for the accident domain, and vice versa. 

Table 7 shows the comparison of these re- 
suits. The performance in the accident domain 
decreased from 85 to 71 using the decision tree 
of the other domain. Also, the performance de- 
creased from 82 to 59 in the succession domain. 

Test \ Train Acc. Suc. 
Accident 85 71 

Succession , 59 82 

Table 7: Result on Domain Dependency 

The result demonstrates the domain depen- 
dency of the method used, at least for the two 
domains. Obviously, making a general comment 
based on these small experiments is dangerous, 
but it suggests that we should consider the do- 
main dependency when we port the system to a 
new domain. 

6 R e l a t e d  W o r k  

There have been several efforts to apply machine 
learning techniques to the same task (Cowie, 
1995) (Bikel et al, 1997) (Gallippi, 1996) (Ben- 
nett et al, 1997) (Borthwick et al, 1997). In this 
section, we will discuss a system which is one of 
the most advanced and which closely resembles 
our own (Bennett et al, 1997). A good review of 
most of the other systems can be found in their 
paper. 

Their system uses the decision tree algorithm 
and almost the same features. However, there 
are significant differences between the systems. 
The main difference is that they have-more than 
one decision tree, each of which decides if a par- 
ticular named entity s tar ts /ends at the current 
token. In contrast, our system has only one de- 
cision tree which produces probabilities of infor- 
mation about the named entity. In this regard, 

we are similar to (Bikel et al, 1997), which also 
uses a probabilistic method in their HMM based 
system. This is a crucial difference which also 
has important consequences. Because the sys- 
tem of (Bennett et al, 1997) makes multiple de- 
cisions at each token, they could assign multiple, 
possibly inconsistent tags. They solved the prob- 
lem by introducing two somewhat idiosyncratic 
methods. One of them is the distance score, 
which is used to find an opening and closing pair 
for each named entity mainly based on distance 
information. The other is a tag priority scheme, 
which chooses a named entity among different 
types of overlapping candidates based on the pri- 
ority order of named entities. These methods re- 
quire parameters which must be adjusted when 
they are applied to a new domain. In contrast ,  
our system does not require such methods, as the 
multiple possibilities are resolved bv the proba- 
bilistic method. This is a strong advantage, be- 
cause we don't  need manual adjustments.  

The result they reported is not comparable to 
our result, because the text and definition are 
different. But the total F-score of our system 
is similar to theirs, even though the size of our 
training data is much smaller. 

7 D i s c u s s i o n  

This paper has described a system which uses 
a .decision tree to find and classify names in 
Japanese texts. Experiments indicate good ac- 
curacy with a small amount of training data, 
and demonstrate the system's portability. The 
issues of training data size and domain depen- 
dency were discussed. 

We would like to discuss the issue of the hand 
created dictionaries. People might think that the 
hand made dictionaries play the mQor role in the 
system. It may be true, but we should remem- 
ber that the experiment in the Executive Succes- 
sion Domain use the same pre-exist dictionar- 
ies used in the Accident Domain. We did not 
modify any dictionaries used in the previous do- 
main, we only added the dictionary for the posi- 
tion. Although we found some dictionary entities 
which should be added, the fact that we achieved 
good performance in the new domain by using 
the same dictionaries shows that dictionaries are 
not so domain dependent. Once we prepared the 
dictionaries, we might not need to modify them 
to a great degree. Also, Table 7 suggests that the 
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decision tree rules are more domain dependent 
rather the dictionaries. 

We have several ideas in order to improve our 
system. 

The most crucial and most elaborate step in 
building up the system is creating the dictionar- 
ies. It was done by hand, because 100 training 
articles are not enough to acquire even prefixes 
and suffixes. One possibility is to use a boot- 
strapping method. Starting with core dictionar- 
ies, we can run the system on untagged texts, 
and increase the entities in the dictionaries. 

Another issue is aliases. In newspaper articles, 
aliases are often used. The full name is used 
only the first time the company is mentioned 
(Matsushita Denki Sangyou gabushiki Kaisya 
= Matsushita Electric Industrial Co. Ltd.) 
and then aliases (Matsush i ta  or M a t s u s h i t a  
Densan = Matsushita E.I.) are used in the later 
sections of the article. Our system cannot handle 
these aliases, unless the aliases are registered in 
tile dictionaries. 

Also. lexical information should help the accu- 
racy. For example, a name, possibly a person or 
an organization, in a particular argument slot of 
a verb can be disambiguated by the verb. For 
example, a name in the object slot of the verb 
'hire' might be a person, while a name in the 
subject slot of verb 'manufacture '  might be an 
organization. 
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Appendix A: Example training data 

Token POS String Special Named entity 

type Dict. answer 

[ [ Sym - - 

ERUSAREMU PN-loc Kata loc ioc-OP-CL 

26 number Num - date-OP-CN 

NICHI N-suf Kanji date-S date-CN-CL 

KYOD0 PN Kanji org org-OP--CL 

] ] Sym - - 

ISURAERU PN-loc Kata loc org-0P-.CN 

KEISATSU N Kanji org-S org-CN-CL 

NI postpos Mira - - 

YORU V Hira - - 

T O  p o s t p o s  H i r a  - - 

, comma Comma - - 

ERUSAREMU PM-loc Kata loc ioc-OP--CN 

SHI N-suf Kanji loc-S ioc-CN-CL 

HOKUBU N Kanji - - 

DE postpos M i r a  - - 

26 number Num - date-OP-CN 

NICMI N-suf Kanji date-S date-CN-CL 

GOGO N Kanji time, t ime-OP-CL 

time-P 

, comma Comma - - 

Appendix B: Example paths in the tree 

ISURAERU (seventh token) 

if current token is a location -> yes 

if next token is a loc-suffix -> no 

if next token is a person-suffix -> no 

if next token is a org-suffix -> yes 

if previous token is a location -> no 

then none = 0.67, org-OP-CN = 0.33 

KEISATSU (eighth 

if current token 

if current token 

if current token 

if current token 

if next token 

if current token 

if next token 

if current token 

if current token 

if next token 

if current token 

token) 

Is a location 

Is a organization 

is a time 

Is a lot-suffix 

Is a time-suffix 

Is a time-suffix 

is a date-suffix 

is a date-suffix 

Is a date 

Is a location 

Is a org-suffix 

if previous token Is a location 

then none = 0.14, org-CN-CL = 0.86 

- >  n o  

- >  n o  

- >  n o  

- >  n o  

- >  n o  

- >  n o  

- >  n o  

- >  n o  

- >  n o  

- >  y e s  

- >  y e s  
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